NordiCHI2000 Proceedings

NordicHI=2000

Stockholm October 23-25 2000

WAP User Interfaces

Titti Kallio and Toni Komu
Sonera Corporation, Mobile Operations,
P.0O.Box 970, FIN-00051 Sonera, Finland
titti.kallio(@sonera.com toni.komu@sonera.com

Regardless of the WAP Forum standardisation, user
interfaces in different WAP devices differ from each
other. In fact, the differences between devices are so
great that you can use very few user interface features
while developing services, i.e. when developing the
services to be used with all WAP phones.

In this presentation we present three ways to cope
with the situation: 1. To apply the principle of the
lowest common denominator, 2. To design separate
applications for different devices or device groupings,
3. A converter.

1. THE DIFFERENCES BETWEEN
DIFFERENT DEVICES

In the Finnish market there are four main WML
browsers according to (presumed) market shares:
Nokia, Ericsson, Phone.com’s UP.Browser (e.g.
Motorola, Siemens) and Microsoft’s Mobile Explorer
microbrowser (e.g. Benefon).

Next we present some of the differences between
these devices. The findings are based on heuristic
evaluation by usability experts and on several
usability tests with different WAP services and
devices.

Input fields: The web analogy among WAP users is
very strong (based partly on marketing slogans like:
“Now you can use web in your GSM phone!”).
However, a web page does not start to show on a
screen from the input field area forward (but from the
actual beginning of the page forward) but UP.Browser
will always focus on the first input field area on a
page (card) and not on the beginning of the page. This
confuses the user. Therefore the input fields must be
separated into their own pages (cards).

<select> feature: This is found difficult to be used by
users. E.g. many phones do not show check boxes
(<select> multiple) and radio buttons (<select>

© Copyright NordiCHI and STIMDI 2000.

single), so users do not get the point here. Select lists
without check boxes or radio buttons are mixed easily
with link lists by the users.

Perceived amount of information on a screen: The
perception depends on the actual screen size, pixel
size, resolution, and the fonts being either absolute or
relative. With some handsets you can present so little
information on a screen that it is worthless to use any
pictures, logos, animations, etc.

Software versions of devices may work in a different
way on a user interface level, too.

WAP gateway: A non-device factor, which also
affects the user interface and programming, is the
WAP gateway and the version used: e.g. some
gateways do not support the Scandinavian alphabet
and force the programmer to use hexacoded
characters.

Basically, what remains when you find the lowest
common denominator between handsets is very little.
If you want to design services which work smoothly
with all possible WAP phones, the specific user
interface features you have left are /inks and input
fields and nothing else.

2 .ONE APPLICATION FOR ALL
HANDSETS: THE LOWEST
COMMON DENOMINATOR

Jakob Nielsen states that designers of WAP services
need to optimise each service for each of the different
telephones (to be able to squeeze every last bit of
usability out of it) [1]. That is ideal but when the
pressure is high for service providers and operators,
and WML programmers are still few, you can seldom
do the optimising.

When you have several WAP applications to design
and not too much labour force for programming,
maintenance etc., then you will probably develop
device-independent applications.



NordiCHI2000 Proceedings

A good idea is to launch a WAP style guide which
first informs the designer about the basic WAP user
interface rules [2] and then states the lowest common
denominator (i.e. links and stand-alone input fields
and their use).

3 DIFFERENT VERSIONS FOR
DIFFERENT HANDSETS

If you have much labour force you can make device-

dependent applications, i.e. several separate versions

of an application. At the moment, this means e.g.

versions for:

- Nokia

- Ericsson

- UP.Browser

- MS microbrowser

- PDA or communicator type WAP devices (one on
the market, more to come soon).

The labour resources will go for programming and
maintenance. There is no need for user interface style
guides here, because manufacturers provide their own
style guides (see manufacturers’ web sites and the
WAP Developers’ Forums there). However, these
style guides are more or less useless when device-
independent applications are developed.

In this solution a different version of the same service
is deployed based on the handset’s capabilities. This
can be implemented, for example, by designing the
service so that the first page the user sees when
entering a service is actually a program that is able to
check the handset used and hence to redirect the user
to the address that is suitable for his/her handset. In
services that consist of only one page this is quite an
easy solution. However in many services the service
consists of many different pages. If the service
includes e.g. ten pages and we want to support four
different kinds of devices, we have in the worst case
40 pages we have to take care of and update when the
service’s content changes. That means quite a lot of
extra work.

Another solution is to design the service so that the
content of the service is generated only when needed.
This means that the service does not consist of static
files, but of application(s) that produce different
content based on the service state and especially based
on the handset type. So the application(s), which could
be for example cgi-scripts or servlets, produce
different content based on handset type. This helps,
but there is still extra work when a new service is
designed.

© Copyright NordiCHI and STIMDI 2000.

NordicHI=2000

Stockholm October 23-25 2000

4. A CONVERTER

The third solution is to concentrate the resources for
making a converter. The converter handles the handset
recognition and modifies the service content
accordingly. The converter could be for example
modified WWW proxy software. In order for the
proxy software to be able to modify the content, the
service platform should be configured so that the
service content is fetched through the proxy software.

In order to make the content modification procedure
simple enough so that no higher-level artificial
intelligence is needed, the source service content
should follow certain principles. In practice this means
that the services to be used through the converter
should be designed using a WAP style guide. Of
course we can try to convert any content whatsoever,
but then the conversion software must be quite
complex. However, having to use a style guide is no
extra work because the service designer probably
follows some style guide anyway. And now when the
service is correctly designed it can be used with
different handsets and it is always optimised for the
handset in use.

One thing to remember here is that the size (in bytes)
of the content may change as a result of the
conversion procedure. The converter can handle this
by splitting the deck if necessary. In some cases this
could change the service logic, but on the other hand
in some cases this can also be of big help. Different
devices can handle different amount of content in one
deck. So in some cases the service might not work
with some devices at all without splitting the deck into
two decks.

We recommend this solution as the easiest way for
programmers and as the way in which all the possible
user interface features of separate handsets can be
benefited from. A service can be designed so that it
uses all the best features of a given handset, probably
the most popular one, and with the help of the
converter other handset users get the best possible
service too.

Also, we would like to urge WAP Forum to start the
standardisation work on the user interface consistency
as soon as possible.

5. REFERENCES

[1] http://www.useit.com/alertbox/20000709.html

[2] Schmidt, A., Schroder, H. & Frick, O. WAP —
Designing for Small User Interfaces in Proc. CHI2000
Extended Abstracts, 2000.

2-



